skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Malik, R_F Mohideen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present the largest optical photometry compilation of Gamma-Ray Bursts (GRBs) with redshifts (z). We include 64813 observations of 535 events (including upper limits) from 28 February 1997 to 18 August 2023. We also present a user-friendly web tool grbLC which allows users to visualise photometry, coordinates, redshift, host galaxy extinction, and spectral indices for each event in our database. Furthermore, we have added a Gamma-ray Coordinate Network (GCN) scraper that can be used to collect data by gathering magnitudes from the GCNs. The web tool also includes a package for uniformly investigating colour evolution. We compute the optical spectral indices for 138 GRBs, for which we have at least 4 filters at the same epoch in our sample, and craft a procedure to distinguish between GRBs with and without colour evolution. By providing a uniform format and repository for the optical catalogue, this web-based archive is the first step towards unifying several community efforts to gather the photometric information for all GRBs with known redshifts. This catalogue will enable population studies by providing light curves (LCs) with better coverage since we have gathered data from different ground-based locations. Consequently, these LCs can be used to train future LC reconstructions for an extended inference of the redshift. The data gathering also allows us to fill some of the orbital gaps from Swift in crucial points of the LCs, e.g., at the end of the plateau emission or where a jet break is identified. 
    more » « less